HAYNES[®] 242[®] alloy

Principal Features

Excellent High-Temperature Strength, Low Thermal Expansion Characteristics, and Good Oxidation Resistance

HAYNES[®] 242[®] alloy (UNS N10242) is an age-hardenable nickel-molybdenum chromium alloy which derives its strength from a long-range ordering reaction upon aging. It has tensile and creep strength properties up to 1300°F (705°C) which are as much as double those for solid solution strengthened alloys, but with high ductility in the aged condition. The thermal expansion characteristics of 242[®] alloy are much lower than those for most other alloys, and it has very good oxidation resistance up to 1500°F (815°C). Other attractive features include excellent low cycle fatigue properties, very good thermal stability, and resistance to high-temperature fluorine and fluoride environments.

Fabrication

HAYNES[®] 242[®] alloy has very good forming and welding characteristics in the annealed condition. It may be forged or otherwise hot-worked by conventional techniques, and it is readily cold formable. Welding may be performed in the annealed condition by standard gas tungsten arc (GTAW) or gas metal arc (GMAW) techniques. Use of matching composition filler metal is suggested. For further information on forming and fabrication, contact Haynes International.

Heat-Treatment

HAYNES[®] 242[®] alloy is furnished in the annealed condition, unless otherwise specified. The alloy is usually annealed in the range of 1900-2050°F (1040-1120°C), depending upon specific requirements, followed by an air cool (or more rapid cooling) before aging. A water quench is recommended for heavy section components. Aging is performed at 1200°F (650°C) for a period of 24-48 hours, followed by an air cool.

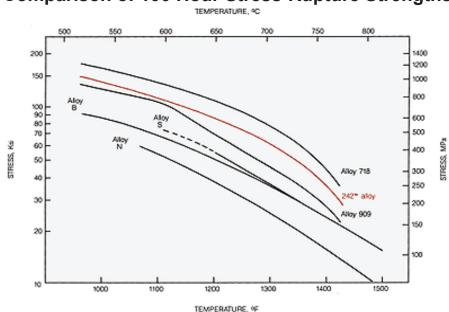
HAYNES[®] 242[®] alloy is produced in the form of reforge billet, bar, plate, sheet, and wire welding products, all in various sizes. Other forms may be produced upon request.

Applications

HAYNES[®] 242[®] alloy combines properties which make it ideally suited for a variety of component applications in the aerospace industry. It will be used for seal rings, containment rings, duct segments, casings, fasteners, rocket nozzles, pumps, and many others. In the chemical process industry, 242[®] alloy will find use in high-temperature hydrofluoric acid vapor-containing processes as a consequence of its excellent resistance to that environment. The alloy also displays excellent resistance to high-temperature fluoride salt mixtures. The high strength and fluorine environment-resistance of 242[®] alloy has also been shown to provide for excellent service in fluoroelastomer process equipment, such as extrusion screws.

HAYNES[®] 242[®] alloy derives its age-hardened strength from a unique long-range-ordering reaction which essentially doubles the un-aged strength while preserving excellent ductility. The ordered $Ni_2(Mo,Cr)$ -type domains are less than a few hundred Angstroms in size, and are visible only with the use of electron microscopy.

Principal Features Continued


Transmission electron micrograph showing long-range-ordered domains (dark lenticular particles) in 242[®] alloy. (Courtesy Dr. Vijay Vasudevan, University of Cincinnati). Sample was solution heat treated at 2012°F (1100°C) and aged for 100 hours at 1200°F (650°C).

Nominal Composition

Weight %							
Nickel:	65 Balance						
Molybdenum:	25						
Chromium:	8						
Iron:	2 max.						
Cobalt:	1 max.						
Manganese:	0.8 max.						
Silicon:	0.8 max.						
Aluminum:	0.5 max.						
Carbon:	0.03 max.						
Boron:	0.006 max.						

Stress Rupture Strength

HAYNES[®] 242[®] alloy is an is an age-hardenable material which combines excellent strength and ductility in the aged condition with good fabricability in the annealed condition. It is particularly effective for strength-limited applications up to 1300°F (705°C), where its strength is as much as double that for typical solid-solution strengthened alloys. It may be used at higher temperatures, where its solid-solution strength is still excellent, but oxidation resistance limits such uses to about 1500-1600°F (815-870°C).

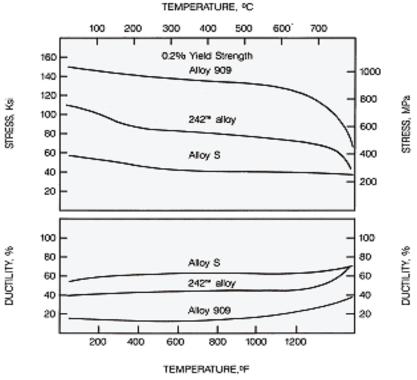
Comparison of 100 Hour Stress-Rupture Strengths*

*Alloy B and Alloy N sheet products. All others hot forged or rolled plate, bar, and rings.

Hot-Kolled Hate - Almealed and Aged										
		Approx	Approximate Initial Stress Required to Cause Rupture in Specified Time							
Test Tem	perature	10	h	10	0 h	100	00 h			
°F	O°	ksi	MPa	ksi	MPa	ksi	MPa			
1000	540	160	1105	140	965	120	825			
1100	595	130	895	110	760	93	640			
1200	650	105	725	90	620	75	515			
1300	705	86	595	69	475	35	240			
1400	760	62	425	29	200	17	115			
1500	815	26	180	16	110	11	76			
1600	870	15	105	11	74	-	-			

Hot-Rolled Plate - Annealed and Aged

Tensile Properties


_	st	0.2		Ultimate			Reduction in
	erature	Tield S	trength	Strength		Elongation	Area
°F	°C	ksi	MPa	ksi	MPa	%	%
RT	RT	122.4	845	187.4	1290	33.7	45.7
200	93	110.4	760	180.7	1245	31.7	47
400	204	102.3	705	173.5	1195	33	51.8
600	316	96.5	665	168.6	1160	33.4	48.4
800	427	86.3	595	161.3	1110	37.6	45.9
1000	538	78.3	540	156.3	1080	38.3	49.9
1200	649	82.7	570	144.9	1000	33.2	41.1
1400	760	44.9	310	106.2	730	44.3	54.1
1600	871	44.8	310	72.5	500	49.7	85.1
1800	982	30.6	210	42	290	54	97.8

Bar and Rings - Annealed and Aged

*RT= Room Temperature

Comparison of Yield Strengths and Elongations*

HAYNES[®] 242[®] alloy exhibits much higher yield strength than typical solid-solutionstrengthened nickel-base alloys, such as HASTELLOY[®] S alloy, but also possesses excellent ductility in the fully heat-treated condition. This can translate into excellent containment characteristics for gas turbine rings and casings, particularly when coupled with 242[®] alloy's lower expansion coefficient and excellent ductility retention following thermal exposure. This combination is also well suited for a range of fastener and bolting applications up to 1300°F (705°C).

*Plate material or manufacture's data

Tensile Properties Continued

-	Test 0.2%				e Tensile		Reduction in
Tempe	erature	Yield S ⁻	trength	Strength		Elongation	Area
°F	°C	ksi	MPa	ksi	MPa	%	%
75	25	126	868	193	1330	36	-
400	204	101	696	176	1213	43	52
800	427	91	627	165	1137	45	52
1000	538	89	613	164	1130	44	51
1100	595	89	613	160	1102	44	51
1200	649	87	599	141	971	29	31
1300	705	73	503	118	813	28	30

Hot-Rolled Plate - Annealed and Aged^(a)

Cold-Rolled Sheet- Annealed and Aged^(a)

	est erature	0.2% Ultimate Tensile Yield Strength Strength		Elongation	Reduction in Area					
°F	°C	ksi	MPa	ksi	MPa	%	%			
75	25	120	827	187	1288	38	-			
1000	538	106	730	165	1137	31	-			
1100	595	102	703	150	1034	18	-			
1200	649	96	661	135	930	14	-			
1300	705	83	572	109	751	10	-			

^(a)Average of two tests per heat, two heats of each product form.

Solution Annealed + Aged 1200°F-48 hr.

Cold-Reduced Sheet- As Cold-Worked and Cold-Worked Plus Aged

HAYNES[®] 242[®] alloy has excellent strength and ductility as a cold-reduced and directly aged product. Coupled with its low thermal expansion characteristics, this makes it an excellent choice for fasteners and springs.

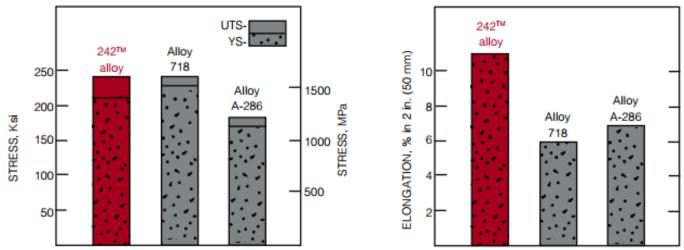
	Те	st	0.2	2%	Ultimate	e Tensile	
	Tempe	Temperature		Yield Strength		ngth	Elongation
-	°F	°C	ksi	MPa	ksi	MPa	%
M.A.	RT	RT	65.3	450	137.6	950	47
M.A. + 20% C.W.	RT	RT	139.5	960	169.6	1170	20
M.A. + 40% C.W.	RT	RT	181.3	1250	217.9	1500	8
M.A. + Age	RT	RT	130	895	192	1325	32
M.A. + 20% C.W. + Age	RT	RT	173	1195	209.5	1445	21
M.A. + 40% C.W. + Age	RT	RT	219.7	1515	244.7	1685	11
M.A. + 40% C.W. + Age	1100	595	191.4	1320	201.9	1390	11
M.A. + 40% C.W. + Age	1200	649	145.9	1005	198.7	1370	8
M.A. + 40% C.W. + Age	1300	705	134.3	925	183.7	1265	11
M.A. + 40% C.W. + Age	1400	760	94.1	650	156	1075	32

RT= Room Temperature

M.A.= Solution Anneal

C.W. = Cold Work

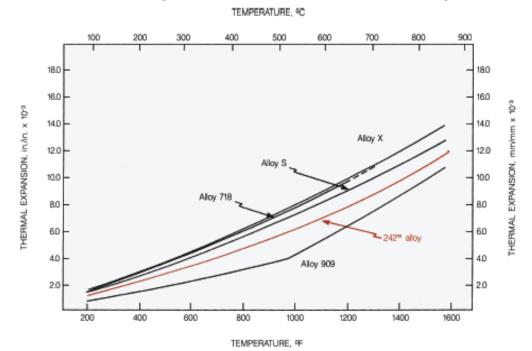
Age = Standard aging treatment


Tensile Properties Continued

Comparative Fastener Alloy Tensile Properties*

HAYNES[®] 242[®] alloy compares very favorably with other cold-worked and directly aged fastener alloys. The graphs below present comparative room temperature tensile properties for 40% cold-reduced and aged sheet product.

Ultimate and Yield Strength


Elongation

*Alloys cold-rolled to 40% reduction. 242[®] alloy aged 1200°F (650°C)/24 hours/AC; alloy 718 aged 1325°F (720°C)/8 hours/FC to 1150°F (620°C)/8 hours/AC; alloy A-286 aged 1200°F (650°C)/16 hours/AC.

Comparison of Thermal Expansion Characteristics

HAYNES[®] 242[®] alloy exhibits significantly lower thermal expansion characteristics than most nickel-base high-temperature alloys in the range of temperature from room temperature to 1600°F (870°C). Although its expansion is greater than that for alloy 909 below 1000°F (540°C), at higher temperatures, the difference narrows considerably.

Total Thermal Expansion, Room to Elevated Temperature

Mean Coefficient of Thermal Expansion

The following compares the mean coefficient of expansion for several alloys:

	Mean	Mean Coefficient of Expansion from RT to Temperature, in./°F (mm/mm-°C)x10 ⁻⁶									
Alloy	1000°F	540°C	1100°F	595°C	1200°F	650°C	1300°F	705°C	1400°F	760°C	
909	5	9	5.4	9.7	5.8	10.4	6.2	11.2	6.6	11.9	
242 ®	6.8	12.2	6.8	12.3	7	12.6	7.2	13	7.7	13.9	
В	6.7	12	6.7	12	6.7	12	6.9	12.4	7.1	12.8	
N	7.3	13.1	7.4	13.3	7.5	13.5	7.6	13.7	7.8	14	
S	7.4	13.2	7.5	13.5	7.6	13.7	7.8	14	8	14.4	
X	8.4	15.1	8.5	15.3	8.6	15.5	8.6	15.7	8.8	15.8	

Fatigue Properties

Strain-Controlled LCF Properties (Hot-Rolled Plate)

The following LCF properties were generated from hot-rolled and fully heat-treated plate. Testing was performed in the transverse direction utilizing a smooth, round bar specimen geometry. The specimens were tested by fully reversed axial strain cycling, R-ratio of -1.0, and a cycle frequency of 20 cpm (0.33 Hz) at a strain range of 1%.

Cycles to Failure at 1200°F (650°C), NF								
242 ®	242 [®] X 188 HR-120 [®]							
2000	4000	2100	3600					

Stress-Controlled Notched LCF Properties (Hot-Rolled Rings)

The following test results were generated from hot-rolled and fully heat-treated rings destined for actual gas turbine engine part applications. Testing was performed in the tangential direction utilizing a round test bar geometry with a double notch design (Kt=2.18). Loading was uniaxial cycling with an R-ratio of 0.05 stress and a cycle frequency of 20 cpm (0.33 Hz).

Maximu	ım Stress	Cycles to Failure at 1200°F (650°C), NF			
ksi	МРа	242 ®	909		
110	760	845	2,835		
100	690	12,220	22,568		
95	655	32,587	13,796		
90	620	76,763	55,679; 40,525		
85	585	297,848	47,707; 43,701		
80	550	304,116*	129,573**		

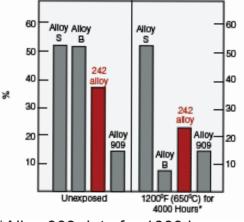
* No crack observed at 198,030 cycles. 8 mil (200µm) crack observed at 200,000 cycles.
**No crack observed at 45,800 cycles. 8 mil (200µm) crack observed at 47,770 cycles.

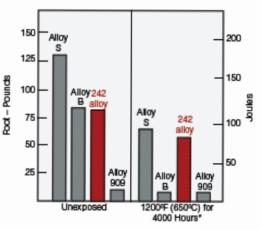
Hot Hardness Data

The following are results from standard vacuum furnace hot hardness tests. Values are given in originally measured DPH (Vickers) units and conversions to Rockwell C/B scale in parentheses.

		Vickers Diamond Pyramid Hardness (Rockwell C/B Hardness)									
Alloy	800°F	425°C	1000°F	540°C	1200°F	650°C	1400°F	760°C	1600°F	870°C	
242[®]	271	26 HRC	263	24 HRC	218	95 HRB	140	75 HRB	78	-	
6B	269	26 HRC	247	22 HRC	225	98 HRB	153	81 HRB	91	-	
25	171	87 HRB	160	83 HRB	150	80 HRB	134	74 HRB	93	-	
188	170	86 HRB	159	83 HRB	147	77 HRB	129	72 HRB	89	-	
230 [®]	142	77 HRB	139	76 HRB	132	73 HRB	125	70 HRB	75	-	
556®	132	73 HRB	129	72 HRB	118	67 HRB	100	56 HRB	67	-	

HRB = Hardness Rockwell "B".


HRC = Hardness Rockwell "C".


Thermal Stability

HAYNES[®] 242[®] alloy has excellent retained ductility and impact strength after long-term thermal exposure at temperature. Combined with its high strength and low thermal expansion characteristics, this makes for very good containment properties in gas turbine static structures. The graphs below show the retained room-temperature tensile elongation and impact strength for 242[®] alloy versus other relevent materials after a 4000 hour exposure at 1200°F (650°C).

Comparative Retained Ductility and Impact Strength

Room-Temperature Tensile Elongation Room Temperature Impact Strength

*Alloy 909 data for 1000 hours.

Room-Temperature Properties after Exposure at 1200°F (650°C)*

Exposure Time		Yield ngth	Ultimate Tensile Strength		Elongation	Reduction of Area	Cha V-No	
h	ksi	MPa	ksi	MPa	%	%	ftIbs.	J
0	110	760	179	1235	39	44	66	90
1000	119	820	194	1340	28	38	41	56
4000	122	840	196	1350	25	37	31	42
8000	121	835	193	1330	24	39	26	35

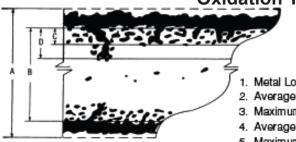
*Samples machined from plate after exposure. Duplicate tests.

Physical Properties

Physical Property	Br	itish Units	Metr	ic Units
Density	RT	0.327 lb/in ³	RT	9.05 g/cm ³
Melting Range	2350-2510°F	-	1290-1375°C	-
	RT	48.0 µohm-in	RT	122.0 µohm-cm
	200°F	48.5 µohm-in	100°C	123.4 µohm-cm
	400°F	49.3 µohm-in	200°C	125.1 µohm-cm
	600°F	50.0 µohm-in	300°C	126.7 µohm-cm
	800°F	50.6 µohm-in	400°C	128.0 µohm-cm
Electrical Resistivity	1000°F	51.1 µohm-in	500°C	129.5 µohm-cm
	1200°F	51.7 µohm-in	600°C	130.6 µohm-cm
	1400°F	52.4 µohm-in	700°C	132.0 µohm-cm
	1600°F	51.3 µohm-in	800°C	132.4 µohm-cm
	1800°F	50.4 µohm-in	900°C	129.8 µohm-cm
	-	-	1000°C	127.6 µohm-cm
	RT	4.7 x 10 ⁻³ in ² /s	RT	30.5 x 10 ⁻³ cm ² /s
	200°F	5.1 x 10 ⁻³ in²/s	100°C	32.9 x 10 ⁻³ cm ² /s
	400°F	5.6 x 10 ⁻³ in ² /s	200°C	35.9 x 10 ⁻³ cm ² /s
	600°F	6.1 x 10 ⁻³ in²/s	300°C	39.0 x 10 ⁻³ cm ² /s
Thermal	800°F	6.6 x 10 ⁻³ in²/s	400°C	41.9 x 10 ⁻³ cm ² /s
Diffusivity	1000°F	7.2 x 10 ⁻³ in ² /s	500°C	45.0 x 10 ⁻³ cm ² /s
Dinusivity	1200°F	7.9 x 10 ⁻³ in ² /s	600°C	48.1 x 10 ⁻³ cm ² /s
	1400°F	7.2 x 10 ⁻³ in ² /s	700°C	51.2 x 10 ⁻³ cm ² /s
	1600°F	7.0 x 10 ⁻³ in ² /s	800°C	44.2 x 10 ⁻³ cm ² /s
	1800°F	7.6 x 10 ⁻³ in ² /s	900°C	46.6 x 10 ⁻³ cm ² /s
	-	-	1000°C	49.6 x 10 ⁻³ cm ² /s
	RT	75.7 Btu-in/ft ² -hr-°F	RT	11.3 W/m-ºC
	200°F	83.6 Btu-in/ft ² -hr-°F	100°C	12.6 W/m-ºC
	400°F	96.1 Btu-in/ft ² -hr-°F	200°C	14.2 W/m-ºC
	600°F	108.5 Btu-in/ft ² -hr-°F	300°C	15.9 W/m-ºC
Thermel	800°F	120.9 Btu-in/ft ² -hr-°F	400°C	17.5 W/m-ºC
Thermal Conductivity	1000°F	133.3 Btu-in/ft ² -hr-°F	500°C	19.2 W/m-ºC
Conductivity	1200°F	145.7 Btu-in/ft ² -hr-°F	600°C	20.9 W/m-°C
	1400°F	158.2 Btu-in/ft ² -hr-°F	700°C	22.5 W/m-°C
	1600°F	170.6 Btu-in/ft ² -hr-°F	800°C	24.2 W/m-°C
	1800°F	183.0 Btu-in/ft ² -hr-°F	900°C	25.8 W/m-°C
RT= Room Tempera	-	-	1000°C	27.5 W/m-°C

RT= Room Temperature

Physical Properties Continued


Physical Property	Briti	sh Units	Metr	ic Units
	RT	0.092 Btu/lb-°F	RT	386 J/Kg-°C
	200°F	0.097 Btu/lb-°F	100°C	405 J/Kg-°C
	400°F	0.100 Btu/lb-°F	200°C	419 J/Kg-°C
	600°F	0.103 Btu/lb-°F	300°C	431 J/Kg-°C
	800°F	0.106 Btu/lb-°F	400°C	439 J/Kg-°C
Specific Heat	1000°F	0.110 Btu/lb-°F	500°C	451 J/Kg-°C
	1200°F	0.118 Btu/lb-°F	600°C	470 J/Kg-°C
	1400°F	0.144 Btu/lb-°F	700°C	595 J/Kg-°C
	1600°F	0.146 Btu/lb-°F	800°C	605 J/Kg-°C
	1800°F	0.150 Btu/lb-°F	900°C	610 J/Kg-°C
	-	-	1000°C	627 J/Kg-°C
	70-200°F	6.0 μin/in-°F	25-100°C	10.8 µm/m-°C
	70-400°F	6.3 µin/in-°F	25-200°C	11.3 µm/m°C
	70-600°F	6.5 µin/in-°F	25-300°C	11.6 µm/m-°C
	70-800°F	6.7 µin/in-°F	25-400°C	11.9 µm/m-°C
	70-1000°F	6.8 µin/in-°F	25-500°C	12.2 µm/m-°C
Mean Coefficient of	70-1100°F	6.8 µin/in-°F	25-600°C	12.3 µm/m-°C
Thermal Expansion	70-1200°F	6.9 µin/in-°F	25-650°C	12.4 µm/m-°C
	70-1300°F	7.2 μin/in-°F	25-700°C	13.0 µm/m-°C
	70-1400°F	7.7 μin/in-°F	25-750°C	13.7 µm/m-°C
	70-1600°F	8.0 µin/in-°F	25-800°C	14.0 µm/m-°C
	70-1800°F	8.3 µin/in-°F	25-900°C	14.5 µm/m-°C
	-	-	25-1000°C	15.0 µm/m-°C
	RT	33.2 x 10 ⁶ psi	RT	229 GPa
	200°F	32.7 x 10 ⁶ psi	100°C	225 GPa
	400°F	31.8 x 10 ⁶ psi	200°C	219 GPa
	600°F	30.8 x 10 ⁶ psi	300°C	213 GPa
	800°F	29.7 x 10 ⁶ psi	400°C	206 GPa
Dynamic Modulus of Elasticity	1000°F	28.6 x 10 ⁶ psi	500°C	199 GPa
	1200°F	27.6 x 10 ⁶ psi	600°C	193 GPa
	1400°F	25.7 x 10 ⁶ psi	700°C	185 GPa
	1600°F	24.0 x 10 ⁶ psi	800°C	172 GPa
	1800°F	22.4 x 10 ⁶ psi	900°C	163 GPa
RT= Room Temperatur	-	-	1000°C	152 GPa

RT= Room Temperature

Oxidation Resistance

HAYNES[®] 242[®] alloy exhibits very good oxidation resistance at temperatures up to 1500°F (815°C), and should not require protective coatings for continuous or intermittent service at these temperatures. The alloy is not specifically designed for use at higher temperatures, but can tolerate short-term exposures.

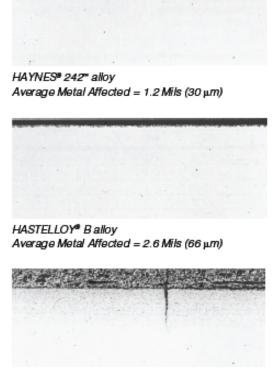
Schematic Representation of Metallographic Technique used for Evaluating Oxidation Tests

Metal Loss = (A – B)/2
Average Internal Penetration = C

3. Maximum Internal Penetration = D

4. Average Metal Affected = ((A - B)/2) + C

5. Maximum Metal Affected = ((A - B)/2) + D


Comparative Burner Rig Oxidation-Resistance at 1400°F (760°C) for 500 Hours

Alloy	Metal Loss		Average Metal Affected		Maximum Metal Affected	
-	mils	μm	mils	μm	mils	μm
Ν	0.7	18	0.8	20	1.2	30
242 ®	1.1	28	1.2	30	1.6	41
В	1.8	46	2.6	66	2.8	71
909	0.3	8	10.8	275	12.8	325

Oxidation Resistance Continued

Oxidation Test Parameters

Burner rig oxidation tests were conducted by exposing samples 3/8 inch x 2.5 inches x thickness (9mm x 64mm x thickness), in a rotating holder, to the products of combustion of No. 2 fuel oil burned at a ratio of air to fuel of about 50:1. (Gas velocity was about 0.3 mach). Samples were automatically removed from the gas stream every 30 minutes and fan-cooled to near ambient temperature and then reinserted into the flame tunnel.

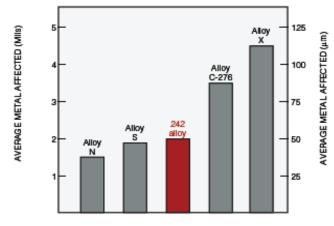
Alloy 909

Average Metal Affected = 10.8 Mils (275 µm)

Microstructures shown relate to the burner rig oxidation test data shown on the page opposite for three of the materials evaluated. The black area shown at the top of the pictures for 242[®] alloy and alloy B represent thickness loss during the test. The alloy 909 apparently exhibited only minor thickness loss. This is believed to be a consequence of the sample actually swelling during the exposure due to oxygen absorption. The sample also developed a very thick, coarse scale and extensive internal oxidation. There was also evidence of significant cracking in the alloy 909 specimen due to the thermal cycling, even though the test samples were not constrained.

Alloy	Meta	Metal Loss		etal Affected			
-	mils	mils µm		μm			
242 ®	0	0	0.5	13			
S	0	0	0.5	13			
Х	0.1	3	1.1	28			
Ν	0.4	10	1.2	30			
В	7.2	183	8.2	208			
909	4.4	112	19.4	493			

Comparative Oxidation-Resistance in Flowing Air at 1500°F (815°C) for 1008 Hours*


*Coupons exposed to flowing air at a velocity of 7.0 feet/minute (2.1m/minute) past the samples. Samples cycled to room temperature once-a-day.

Resistance to High Temperature Fluoride Environments

Research has shown that materials which have high molybdenum content and low chromium content are generally superior to other materials in resisting high-temperature corrosion in fluorine-containing environments. HAYNES® 242® alloy is in that category, and displays excellent resistance to both fluoride gas and fluoride salt environments.

Comparative Resistance to 70% HF at 1670°F (910°C) for 136 Hours					
	Thickness Loss				
Alloy	mils	mm			
242 ®	12.6	0.3			
S	15.8	0.4			
N	15.8	0.4			
625	47.2	1.2			
230 ®	70.9	1.8			
C-22 [®]	78.7	2			
600	141.7	3.6			

Comparative Resistance to KCI-KF-NaF Mixed Salts

Samples were exposed to a mixture of KCI-KF-NaF salts for a total of 40 hours in service. Temperature was cycled from 1290 to 1650°F (700-900°C) during the course of the exposure.

Resistance to Nitriding

HAYNES® 242® alloy have very good resistance to nitriding environments. Tests were performed in flowing ammonia at 1800°F (980°C) for 168 hours. Nitrogen absorption was determined by chemical analysis before and after exposure and knowledge of the specimen area.

Alloy	Nitrogen Absorption (mg/cm ²)
214 ®	0.3
242®	0.7
600	0.9
230®	1.4
X	3.2
800H	4.0
316 SS	6.0
304 SS	7.3
310 SS	7.7

Resistance to Salt Spray Corrosion

HAYNES[®] 242[®] alloy exhibits good resistance to corrosion by sodium-sulfate-containing sea water environment at 1200°F (650°C). Tests were performed by heating specimens to 300°F (150°C), spraying with a simulated sea water solution, cooling and storing at room temperature for a week, heating to 1200°F (650°C) for 20 hours in still air; cooling to room temperature, heating and spraying again at 300°F (150°C), and storing at room temperature for a week.

	Metal	Loss	Maximum Metal Affected		
Alloy	mils	μm	mils	μm	
S	0.1	2.5	0.2	5.1	
242 ®	0.15	3.8	0.3	7.6	
В	0.2	5.1	0.3	7.6	
909	0.4	10.2	0.2	30.5	

Resistance to Hydrogen Embrittlement

Notched room-temperature tensile tests performed in hydrogen and air reveal that 242[®] alloy is roughly equivalent to alloy 625 in resisting hydrogen embrittlement, and appears to be superior to many important materials. Tests were performed in MIL-P27201B grade hydrogen, with a crosshead speed of 0.005 in./min. (0.13 mm/min.).

	Hydrogen Pressure		Stress Concentration Factor	Ratio of Notched Tensile Strength	
Alloy	psi	MPa	Kt	Hydrogen/Air	
Waspaloy	7,000	48	6.3	0.78	
625	5,000	34	8	0.76	
242 ®	5,000	34	8	0.74	
718	10,000	69	8	0.46	
R-41	10,000	69	8	0.27	
X-750	7,000	48	6.3	0.26	

Aqueous Corrosion Resistance

Although not specifically designed for use in applications which require resistance to aqueous corrosion, 242[®] alloy does exhibit resistance in some media which compares favorably with that exhibited by traditional corrosion-resistant alloys. Data shown for 242[®] alloy was generated for samples tested in the mill annealed condition.

Corrosive				Corrosion Rate, Mils/year (mm/year)							
Media	Tempe	erature	Exposure	24	2 [®]	В	-2	C-/	22 [®]	1	N
-	°F	°C	h	mils	mm	mils	mm	mils	mm	mils	mm
5% HF	175	79	24	14	0.36	12	0.3	25	0.64	20	0.51
48% HF	175	79	24	32	0.81	25	0.64	27	0.69	31	0.79
70% HF	125	52	24	35	0.89	66	1.68	32	0.81	48	1.22
10% HC	Boi	ling	24	22	0.56	7	0.18	400	10.16	204	5.18
20% HCI	Boi	ling	24	41	1.04	15	0.38	380	9.65	-	-
55% H ₃ PO ₄	Boi	ling	24	3	0.08	4	0.1	9	0.23	-	-
85% H ₃ PO ₄	Boi	ling	24	4	0.1	4	0.1	120	3.05	-	-
10% H ₂ SO ₄	Boi	ling	24	2	0.05	2	0.05	11	0.28	46	1.17
50% H ₂ SO ₄	Boi	ling	24	5	0.13	1	0.03	390	9.91	-	-
99% ACETIC	Boi	ling	24	<1	<0.03	1	0.03	-	Nil	-	-

Fabrication and Welding

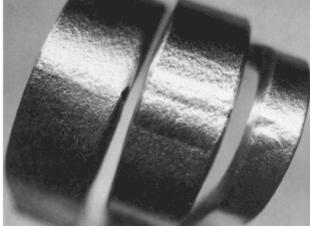
HAYNES[®] 242[®] alloy has excellent forming and welding characteristics. It may be hotworked at temperatures in the range of about 1800-2250°F (980-1230°C) provided the entire piece is soaked for a time sufficient to bring it uniformly to temperature. Initial breakdown is normally performed at the higher end of the range, while finishing is usually done at the lower temperatures to afford grain refinement.

As a consequence of its good ductility, 242[®] alloy is also readily formed by cold-working. All hot or cold-worked parts should be annealed at 1900-2050°F (925-1120°C) and cooled by air cool or faster rate before aging at 1200°F (650°C) in order to develop the best balance of properties.

The alloy can be welded by a variety of processes, including gas tungsten arc, gas metal arc, and shielded metal arc. High heat input processes such as submerged arc and oxyacetalyne welding are not recommended.

Welding Procedures

Welding procedures common to most high-temperature, nickel-base alloys are recommended. These include use of stringer beads and an interpass temperature less than 200°F (95°C). Preheat is not required. Cleanliness is critical, and careful attention should be given to the removal of grease, oil, crayon marks, shop dirt, etc. prior to welding. Because of the alloy's high nickel content, the weld puddle will be somewhat "sluggish" relative to steels. To avoid lack of fusion and incomplete penetration defects, the root opening and bevel should be sufficiently open.


Filler Metals

HAYNES[®] 242[®] alloy should be joined using matching filler metal. If shielded metal arc welding is used, HASTELLOY[®] W alloy coated electrodes are suggested.

Fabrication and Welding Continued

Post-Weld Heat Treatment

HAYNES[®] 242[®] alloy is normally used in the fully-aged condition. However, following forming and welding, a full solution anneal is recommended prior to aging in order to develop the best joint and overall mechanical properties.

Typical root, face, and side bends (L to R) for welded 242[®] alloy 0.5-inch (13 mm) plate and matching filler metal. Bend radius was 1.0 inch (25 mm).

Machining

HAYNES[®] 242[®] alloy may be machined in either the solutionannealed or aged conditions. Carbide tools are recommended. In the annealed condition (RB 95-100 typical hardness) the alloy is somewhat "gummy". Better results may be achieved by performing machining operations on material in the age-hardened condition (RC 35-39 typical hardness). Finish turning has been successfully done employing carbide tools with a depth of cut in the range of 0.010-0.020 inch (0.25-0.50 mm), rotation speeds of 200-400 rpm, 40-80 sfm, and a waterbase lubricant.

Specifications and Codes

Specifications

HAYNES [®] 242 [®] alloy					
(N1	0242)				
Sheet, Plate & Strip	SB 434/B 434				
	P= 44				
	SB 573/B 573				
Billet, Rod & Bar	B 472				
	P= 44				
Coated Electrodes	-				
Dere Malding Dede 9 Mine	SFA 5.14, F= 44 (ERNiMo-12)				
Bare Welding Rods & Wire	A 5.14 (ERNiMo-12)				
	SB 622/B 622				
Seamless Pipe & Tube	P= 44				
	SB 619/B 619				
Welded Pipe & Tube	SB 626/B 626				
	P= 44				
	SB 366/B 366				
Fittings	P= 44				
Foreirono	SB 564/B 564				
Forgings	P= 44				
DIN	-				
Others	-				

Specifications and Codes Continued

Codes							
HAYNES [®] 242 [®] alloy							
(N10242)							
	Section I		-				
		Class 1	-				
	Section III	Class 2	-				
		Class 3	-				
	Section IV	HF-300.2	-				
ASME	Section VIII	Div. 1	1000°F (538°C) ¹				
ASIVIE		Div. 2	-				
	Section XII	-					
	B16.5	-					
	B16.34	-					
	B31.1	-					
	B31.3	B31.3 -					
MMPDS		-					

¹Approved material forms: Plate, Sheet, Bar, Forgings, fittings, welded pipe/tube, seamless pipe/tube

Disclaimer:

Haynes International makes all reasonable efforts to ensure the accuracy and correctness of the data in this document but makes no representations or warranties as to the data's accuracy, correctness or reliability. All data are for general information only and not for providing design advice. Alloy properties disclosed here are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature and, as such, are indicative only of the results of such tests and should not be considered guaranteed maximums or minimums. It is the responsibility of the user to test specific alloys under actual service conditions to determine their suitability for a particular purpose.

For specific concentrations of elements present in a particular product and a discussion of the potential health affects thereof, refer to the Safety Data Sheets supplied by Haynes International, Inc. All trademarks are owned by Haynes International, Inc., unless otherwise indicated.